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ABSTRACT

This paper reports a ML model which classifies
the color of Magic the Gathering cards based on
their rules text. Using text embedding and Softmax
Regression the model performed 3x better than
random guessing and marginally better than One-
Versus-All Multi-Class Classification.

INTRODUCTION

Magic The Gathering (MTG) is a popular trading card game
which contains over 26,000 unique cards. Players select
subsets of these cards to build decks which they use to play
against each other. Each card is labeled as belonging to 1 of 5
colors: Blue, Black, Red, White or Green. The game’s design
philosophy attempts to maintain a ”color pie” where each
color of card owns a unique style and set of game mechanics.
The mechanics of any specific card are defined by it’s rules
text, therefore the ”color pie” enables the classification of
a card’s color through this text. An effective solution to
this problem could have broader applications, including the
detection of when a card’s mechanics do not match it’s color
(known as a ”color pie break”) which can be useful for deck
development. Additionally, this model can be applied as a
benchmark for future MTG card vector representations, which
are integral to the development of MTG card search engines or
Game Bots.

Data Acquisition and Prepossessing

The rules text and color for all cards in ”core sets” (sets
of cards which represent the games fundamental design
direction) were sourced from web scraping the popular card
database ScryFall. In order to convert the card’s rules text into
numerical representations which could be used for training
each was processed through the text embedding pipeline
in Figure 2. Gensim’s Doc2Vec model was used, which
leverages Continuous bag of words and Skip gram techniques
to generate semantically meaningful feature extractions. To
avoid data leaks, the model is trained using the corpus of
documents from the train partition of the data, then the trained
Doc2Vec model generates embeddings for both partitions.
Finally we are left with data in the following form:

D={(xp,yp) |p=1,2,...,P}, (1)

Figure 1. Basic Card Structure with Rules Text and Color Highlighted

where P is the number of cards, K is the number of classes
(5), yp∈{1,2,...,K} representing class labels, and xp∈RN

is an N -dimensional feature vector.

Card Color Classification as an Optimization Problem

The objective of binary classification is to design a conditional
probability model what will push P (yp|xp)=1 resulting in a
linear decision boundary in the form of ŵ∗T x̂p where the sign
of the result will predict label ŷp for given sample x̂p. This can
be expanded to multi-class classification by finding K binary
classifiers which distinguish between the kth class and non
kth classes. Resulting in K parameter vectors:

W=[ŵ1,ŵ2,...,ŵK ] (2)

such that each ŵk represents the parameters for linear
boundary ŵ∗T

k x̂ = 0, where k = 1,2, ... , K. Then by
normalizing each parameter set by their feature touching
weights we can interpret the output of the model as the
distance between the sample and the decision boundary, with
the maximum distance between each model’s output as the

https://scryfall.com/
https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
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Figure 2. Text Embedding Pipeline. The card information is sourced from
ScryFall, then the embeddings are generated using a Doc2Vec Model trained
on the train partition to avoid data leaks.

predicted label. This solution takes the form:

y= argmax
k=1,2,...,K

ŵT
k x̂p (3)

Given this general solution to the multi-class classification
problem we can formulate the current card color classification
as an optimization problem. Because the model with the
largest output will be ŵyp the For any given sample (xp,yp)
then

max
1≤j≤k

(ŵT
j x̂p)= ŵT

yp x̂p (4)

By minimizing the average difference between these terms
across all training samples we are able to calculate the optimal

parameter sets for each class, thus the training objective is to
minimize the following function:

f(ŵ1,ŵ1,...,ŵk)=
1

P

P∑
p=1

[
max

1≤j≤k
(ŵT

j x̂p−ŵT
yp x̂p)

]
(5)

Using softmax to convert to a smooth function and adding
a regularization term we obtain the final objective function
(Softmax Regression):

f(ŵ1,ŵ2,...,ŵk)=
1

P

P∑
p=1

[
log

 k∑
j=1

eŵ
T
j x̂p

−ŵT
yp x̂p

]

+
µ

2

k∑
j=1

∥ŵj∥22 (6)

Additional Background Information

Feature Extraction: Feature extraction is a machine learning
process which attempts to identify and extract important
features from raw data. The goal is to provide the model
with more informative data which will improve learning.
In this project, the feature extraction technique used is
text embedding, which converts raw text into a vector
representation. The text embedding method used is Doc2Vec,
which utilizes unsupervised learning to map sequences of text
into a vector space such that semantically similar text samples
are spatially clustered. The model is trained on a corpus
of documents taking document ids and tokenized content as
input, as well as user defined output dimensions and training
epochs.

Dimensionality Reduction: Dimensionality reduction is used
to convert high-dimensional data to lower dimensions in
such a way that preserves relevant information about the
data. In this project Principle Component Analysis (PCA)
is used to project the data into 2-Dimensional space so
that it can be visualized. PCA works by projecting the data
onto orthogonal hyper-planes (principle components) which
contain the highest variation. The principle components are
the eigenvectors of the data’s covariance matrix and thus can
be calculated through a singular value decomposition (SVD)
of the data.

Weight Regularization: Weight regularization is used to
prevent over-fitting and increase training efficiency. In
this project the regularization technique used is ridge
regularization, which adds a penalty to large model weights.
The regularization term as defined in the objective function is:

µ

2

k∑
j=1

||ŵj ||22 (7)

https://scryfall.com/
https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_doc2vec_lee.html
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Adding this term as a penalty to the loss function optimizes for
low energy in the model parameters, which results in a lower
condition number making gradient descent methods more
efficient. Additionally the regularization term is independent
of the dataset, which allows for better model generalization.
The magnitude of this penalty is controlled by hyper-
parameter µ.

Iterative Optimization Method: Minimization of the Softmax
Regression cost function does not have a closed-form solution
solution, thus iterative optimization techniques must be
utilized. This project will use the memory-less Broyden-
Fletcher-Goldfarb-Shanno Algorithm (ML-BFGS) which
supplements gradient calculations with curvature information
through gradual approximation of the Hessian. The algorithm
is described below:

1) Compute the following where k is the current iteration and
x is the optimization parameter:

δk=xx+1−xk

γk=∇f(xk+1)−∇f(xk)

ρk=
1

γT
k δk

tk=δTk ∇f(xk+1)

qk=∇f(xk+1)−ρktkγk

2) Compute the search direction at (k+1)th iteration:

dk+1=ρk
(
γTk qk−tk

)
δk−qk

3) Repeat until end condition is met, in this case simply
repeat if k<iter where iter is a number of specified
iterations

MATERIALS AND METHODS

Dataset

The dataset contains cards from all core sets accessed from
the ScryFall database. The training partition contained 3740
samples of 600 x 1 vectors for a total of 8.55 MB and the
testing partition contained 935 samples of 600 x 1 vectors for
a total of 2.13 MB.

The Model

The Softmax regression model has K sub-models, each with
N weights and 1 bias term, where K is the number of classes
and N is the number of features. Thus in this project the model
had a total of 3005 parameters, each occupying 8 bytes in
memory for a total modal size of 23.48 KB.

Figure 3. Training and Testing program Flow

Training

As described in the introduction the primary method used is
formulating the data as a Softmax regression problem, then
using the ML-BFGS iterative optimization method to solve
for parameters to minimize it. The minimized Softmax cost
function provides trained model parameters (ŵ∗

1,ŵ
∗
2,...,ŵ

∗
k)

which are used to classify the test partition with the following
formula:

j∗=arg

(
max

1≤j≤k
ŵ∗T
j x̂

)
(8)

where x̂=[x,1]T , j∈1,2,...,K and j∗ is the predicted
class. ML-BFGS utilizes a predefined gradient of the Softmax
function which is calculated to be:

∇ŵk
f(ŵ)=

1

P

P∑
p=1

 eŵ
T
k x̂p∑K

j=1e
ŵT

j x̂p

x̂p−xk+µŵk (9)

The training and testing process are implemented in Matlab
and follow the outline shown in Figure 3. All code is made
available in the appendix.

https://scryfall.com/
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Figure 4. Training Loss per Epoch

Training parameters were selected heuristically. Higher
dimensional text embeddings required more training epochs
before converging which is expected with ML-BFGS, which
will converge in n iterations for strictly convex functions,
where n the number of model dimensions. Training loss per
epoch is shown in Figure 4, and follows the expected trend
of steep loss reduction flattening out as the optimization
converges. Training was done on an Intel i7-8565U cpu and
took approximately 0.2592 seconds per epoch.

RESULTS

This section reports test results for class prediction with the
trained model on the test data partition. It also also reports
results from a One-Versus-All classification with logistic
regression for comparison. The following formulas were used
to calculate the metrics:

Accuracy=
Total Correct Samples

Total Samples
(10)

Accuracy C=
Total Correct Samples in C

Total Samples in C
(11)

Table 1. Training Hyper-Parameters

Parameter Value

Epochs 600
µ 1e−4
Embedding Dimensions 600
Embedding Epochs 300

Precision C=
TPc

TPc+FPc
(12)

Recall C=
TPc

TPc+FNc
(13)

F1 Score C=
2 ·precisionc ·recallc
precisionc+recallc

(14)

where C is a class from 1,2...,K

DISCUSSION

The results demonstrate that softmax regression multi-class
classification is a viable solution for MTG card color
classification. An accuracy of 60.2% shows that the model
is learning the dataset (3X better than random guessing). In
this case False Positives are non-critical, therefore accuracy
is a more important metric than F1 Score, even so, F1,
precision and recall all score similarly, indicating that the
results are not skewed by class imbalances. Class by class
metrics reveal similar results for each class, with Green cards
being the easiest to classify and White cards being the hardest.
The confusion matrix in Figure 5 displays that White and
Black cards were the most difficult to differentiate, this is
expected as they share many common themes. Additionally,
the model out performs One-Versus-All classification with
logistic regression across all metrics indicating that the joint

Table 2. Average Model Performance

Accuracy F1 Score Precision Recall

60.2% 0.6020 0.6033 0.6024

Table 3. Model Performance by Class

Color Class Accuracy F1 Score Precision Recall

Blue 60.1% 0.6339 0.6705 0.6010

Black 60.4% 0.5698 0.5385 0.6049

White 59.2% 0.5908 0.5894 0.5922

Red 60.5% 0.6137 0.6222 0.6054

Green 60.8% 0.6021 0.5959 0.6085

Table 4. One-Versus-All Model Performance

Accuracy F1 Score Precision Recall

57.6% 0.5764 0.5770 0.5778
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Figure 5. Confusion Matrix. Class Legend (Blue: 1, Black: 2, White: 3, Red:
4, Green: 5)

Figure 6. Test Partition Data Visualized in 2-D with PCA. Sample colors are
correlated to class.

probability distribution and lower imbalance sensitivity of the
Softmax regression model are beneficial to this problem.

The accuracy scores are somewhat low, but observing the
dataset visualized in Figure 6 shows that this is clearly a
difficult task, with no obvious clustering or boundaries for
classes. The differentiability of the classes is controlled by
two main constraints: the quality of the text embeddings and
the strength of the ”color pie” within MTG card design. The
former will always be a hard constraint on the problem, as
there are no concrete limits to which cards can belong to which
color. The latter is a clear frontier for improvement, as it is
likely that the feature extraction in this project did not reach
the limit of useful information retrievable from the card’s rules
text. Finally, more complex models may be able to better learn
the patterns in the data, but again, this is constrained by the
information contained in the data itself.

CONCLUSION

The project presents a viable solution to the prediction of
MTG card color based on rules text. Optimizing a Softmax
Regression Cost function with rules text embeddings we are
able to generate a set of optimal parameters which can be used
to effectivly predict a cards color at over 60% accuracy.
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APPENDIX

Softmax Regression

load(’x_test.mat’);
load(’x_train.mat’);
load(’y_test.mat’);
load(’y_train.mat’);

Dtr = x_train;
Dte = x_test;
yte = y_test;
ytr = y_train;

tr_length = size(y_train, 2)
te_length = size(y_test, 2)
num_dimentions = size(x_train, 1);
size(Dtr)
size(ytr)
Dtr = [Dtr;double(ytr)];
Dte = [Dte; ones(1,te_length)];

K = 5;
mu = 0.00001;
iter = 600;

[Ws,f]=
SRMCC_bfgsML(Dtr,’f_SRMCC’,’g_SRMCC’,mu,K,iter);

%Generate Confusion Matrix
[˜,ind_pre] = max((Dte’*Ws)’);
C = zeros(K,K);
for j = 1:K
ind_j = find(yte == j);
for i = 1:K
ind_pre_i = find(ind_pre == i);
C(i,j) = length(intersect(ind_j,ind_pre_i));
end
end

C
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%Calculate Accuracy
accuracy = trace(C)/sum(C,"all")*100
precision = zeros(1, K);
recall = zeros(1, K);
f1_score = zeros(1, K);

%Calculate F1 Score
for i = 1:K

TP = C(i, i);
FP = sum(C(:, i)) - TP;
FN = sum(C(i, :)) - TP;

precision(i) = TP / (TP + FP);
recall(i) = TP / (TP + FN);

f1_score(i) = 2 * (precision(i) *
recall(i)) / (precision(i) +
recall(i));

end

f1_score
precision
recall

mean(f1_score)
mean(precision)
mean(recall)

confusionchart(C)

One-Versus-All Logistic Regression

load(’x_test.mat’);
load(’x_train.mat’);
load(’y_test.mat’);
load(’y_train.mat’);

Dtr = x_train;
Dte = x_test;
yte = y_test;
ytr = y_train;

tr_length = size(y_train, 2)
te_length = size(y_test, 2)
num_dimentions = size(x_train, 1);

% Normalize Training Data
Xtr = zeros(num_dimentions,tr_length);
m = zeros(1,num_dimentions);
v = zeros(1,num_dimentions);

for i = 1:num_dimentions
xi = Dtr(i,:);
m(i) = mean(xi);
v(i) = sqrt(var(xi));
Xtr(i,:) = (xi - m(i))/v(i);
end

Xte = zeros(num_dimentions,te_length);
for i = 1:num_dimentions
xi = Dte(i,:);
Xte(i,:) = (xi - m(i))/v(i);
end

% Done
iterations = 600;
mu = 0.0001;
models = zeros(num_dimentions+1,5);
% Train Models
for model_number = 1:5

w0 = zeros(1,num_dimentions+1);

ytr_model = ones(size(y_train));
ytr_model(y_train ˜= model_number) = -1;

yte_model = ones(size(y_test));
yte_model(y_test ˜= model_number) = -1;

D = [Xtr; ones(1,tr_length); ytr_model];
[xs,fs,k] =

grad_desc(’f_wdbc’,’g_wdbc’,w0’,D,mu,iterations);
models(:,model_number) = xs;

end

Dte = [Xte; ones(1,te_length);];
correct_guesses = 0;
% Make Predictions
for p = 1:te_length

[M,I] = max([Dte(:, p)’*models(:,1),
Dte(:, p)’*models(:,2), Dte(:,
p)’*models(:,3), Dte(:,
p)’*models(:,4), Dte(:,
p)’*models(:,5)]);

if I == y_test(p)
correct_guesses = correct_guesses + 1;

end
end

accuracy = correct_guesses/te_length*100

Principle Component Analysis

load(’x_test.mat’);
load(’x_train.mat’);
load(’y_test.mat’);
load(’y_train.mat’);

size(x_test)
size(x_train)
size(y_test)
size(y_train)

[coeff, score, ˜] = pca(x_train’);

pc1 = score(:, 1);
pc2 = score(:, 2);
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colors = [
0, 0, 1;
0, 0, 0;
1, 1, 0;
1, 0, 0;
0, 1, 0

];

label_colors = colors(y_train, :);

figure;
scatter(pc1, pc2, 5, label_colors, ’filled’);
xlabel(’Principal Component 1’);
ylabel(’Principal Component 2’);
title(’PCA of Test Partition’);
grid on;

Web Scraping

import requests
import pandas as pd
from sklearn.model_selection import

train_test_split

# Define the sets
sets = [’M21’, ’foundations’, ’M20’, ’M19’,

’8ED’, ’9ED’, ’7ED’, ’10E’, ’6ED’, ’5ED’,
’4ED’,
’M15’,’M14’,’M13’,’M12’,’M11’,’M10’,’ORI’]

# Function to check if a card is a single
color and not colorless

def is_single_color(card):
# Check if the card has one color and is

not colorless
if ’colors’ in card:

return len(card[’colors’]) == 1 and
’Colorless’ not in card[’colors’]

else:
return False

def get_cards_from_set(set_code):
url = f’https://api.scryfall.com
/cards/search?q=set:{set_code}’
cards = []

while url:
response = requests.get(url)
data = response.json()

for card in data[’data’]:
if is_single_color(card) and

card[’layout’] != ’token’: #
Exclude tokens
# Ensure no multiple printings

if not any(c[’name’] ==
card[’name’] for c in cards):
cards.append({

’name’: card[’name’],
’color’: ’,

’.join(card[’colors’])
if ’colors’ in card
else ’Colorless’,

’oracle_text’:
card.get(’oracle_text’,
’’)

})
url = data.get(’next_page’, None)

return cards

all_cards = []
for set_code in sets:

all_cards.extend(get_cards_from_set(set_code))

# Create DataFrame
df = pd.DataFrame(all_cards)

# Train Test Partitions
train_df, test_df = train_test_split(df,

test_size=0.2, random_state=42)

# Save the DataFrame
test_df.to_pickle("df_text_test.pkl")
train_df.to_pickle("df_text_train.pkl")

print(len(test_df))
print(len(train_df))

Doc2Vec Model Training

import pandas as pd
import gensim
# Load DataFrame
df = pd.read_pickle("./df_text_train.pkl")
df_test =

pd.read_pickle("./df_text_test.pkl")

df = pd.DataFrame(df[’oracle_text’])
df_test =

pd.DataFrame(df_test[’oracle_text’])

# Preprocess the rules text
df[’processed_text’] =

df[’oracle_text’].apply(
gensim.utils.simple_preprocess)
df_test[’processed_text’] =

df_test[’oracle_text’].apply(
gensim.utils.simple_preprocess)

train_corpus = []
test_corpus = []

for index, row in df.iterrows():
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train_corpus.append(gensim.models.doc2vec.
TaggedDocument(row[’processed_text’],

[index]))

for index, row in df_test.iterrows():
test_corpus.append(row[’processed_text’])

model =
gensim.models.doc2vec.Doc2Vec(vector_size=50,
min_count=2, epochs=40)

model.build_vocab(train_corpus)
model.train(train_corpus,

total_examples=model.corpus_count,
epochs=model.epochs)

Text Embedding

import pandas as pd
import numpy as np
from scipy.io import savemat

df_train =
pd.read_pickle("./df_embedding_train.pkl")

df_test =
pd.read_pickle("./df_embedding_test.pkl")

color_map = {’U’: 1, ’B’: 2, ’W’: 3, ’R’: 4,
’G’: 5}

def prepare_data(df, color_map):
embeddings =

np.array(df[’embedding’].tolist()).T #
Transpose so each column is a sample

labels = df[’color’].map(color_map).values

return embeddings, labels

# Prepare train and test data
x_train, y_train = prepare_data(df_train,

color_map)
x_test, y_test = prepare_data(df_test,

color_map)

# Save to mat files
savemat(’x_train.mat’, {’x_train’: x_train})
savemat(’y_train.mat’, {’y_train’: y_train})
savemat(’x_test.mat’, {’x_test’: x_test})
savemat(’y_test.mat’, {’y_test’: y_test})
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