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ABSTRACT

DanQ is a hybrid convolutional and recurrent deep
neural network which predicts non-coding function
of DNA sequences. The model was developed
in 2016 and achieved considerable performance
improvements to comparable solutions. In this
paper we report on a re-implementation of the DanQ
model: BioQ, which applies the original paper’s
methodology (model architecture and training
procedure) with up-to-date machine learning
frameworks. BioQ achieved similar results to the
original paper and introduced nice-to-have usability
features. Implementation details are available on
our Github.

INTRODUCTION

As one of the first methods to apply Recurrent Neural
Networks to DNA sequence processing, DanQ made
important progress in the field of bio-informatics. Currently
the model’s code base is open source and available on
the DanQ Github, however, its reliance on legacy packages
and their cascading dependencies severely compromise its
usability. This project implements DanQ using modern
supported frameworks, making it easily usable. We also make
changes to memory access allowing for more usability with
low memory systems, as well as updating training hyper-
parameters to boost performance. Finally, we test BioQ
against the same metrics as DanQ and compare the results.

The ability to predict the function of non-coding DNA has
significant scientific benefits, as it makes up over 98% of
the human genome and contains 93% of disease associated
variants (1). Deep Neural Networks (DNN) are effective at
learning high levels of abstraction from large feature rich
datasets, making them an appropriate solution for direct
sequence processing. The ability to directly process sequences
is important for revealing novel insights about non-coding
DNA whose function is not yet defined. Convolutional Neural
Networks (CNN), use convolutional layers to capture local
patterns in data. The application of CNNs to DNA allows
the convolutional filters to capture “sequence motifs”, which
are short recurring patterns linked to biological function.
Recurrent Neural Networks (RNN) are deep neural networks
with cyclic components designed to process spatial structures
of sequential data. A bi-directional long short-term memory
network (BLSTM) is a variant of RNN used to learn long

term dependencies. The hybrid framework combines CNN
and BLSTM models, first using the CNN to extract motifs,
which are used by the BLSTM to learn the structural patterns
these motifs follow (presumed to be a regulatory grammar
governed by physical constraints).

MATERIALS AND METHODS

Model Architecture

The model begins with a convolutional layer that applies 320
filters, each of size 26, to scan the input DNA sequences
encoded as one-hot vectors of size 4 (A, C, G, T). The
output of the convolution is passed through a ReLU activation
function and down-sampled using a MaxPooling operation
with a stride and kernel size of 13 to reduce spatial
dimensions. To prevent over-fitting, a Dropout layer (p=0.2)
follows. The output is then fed into a Bidirectional LSTM
(Long Short-Term Memory) network with 2 layers, each
having 320 units in both forward and backward directions
(640 units in total for bi-directionality). This recurrent
architecture captures long-range dependencies in the sequence
data. Following the LSTM, another Dropout layer (p=0.5)
is added for regularization. The LSTM outputs are flattened
and passed through a series of fully connected layers, starting
with a linear layer of 925 neurons (ReLU-activated) and
another with 919 neurons, corresponding to the number of
functional annotations being predicted. The model concludes
with a Sigmoid activation function, converting outputs to
probabilities.

The model contains approximately 49.4 million trainable
parameters, distributed among the convolutional, recurrent,
and dense layers as shown in Figure 1.

Dataset

The dataset is sourced from ENCODE (Encyclopedia of DNA
Elements). It contains labeled DNA sequences annotated for
functional properties such as transcription factor binding and
histone modifications.
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Figure 1. Model weights/parameters over different layer

The DNA sequences are of length 1,000, with four channels
for each one-hot encoded base (shape: 4 × 1,000). A binary
label vector of length 919, indicates the presence or absence
of specific functional annotations in a given sequence. In total,
the training dataset is 3.3GB and contains 4,400,000 samples.

Implementation and Training

The model was implemented in Python using Pytorch (a
popular machine learning library), and training was handled
on the CUDA platform with an NVIDIA RTX 3070 GPU.

The network was trained with the RMSprop algorithm with
a mini batch of size 100 and max norm gradient clipping
was used to prevent exploding gradients. Further training
hyper-parameters are shown in Table 1. Training time was
approximately 1 hour per epoch.

RESULTS

Figure 3 displays loss per epoch, demonstrating expected
learning behavior of steep initial loss reduction flattening out
as the optimization converges after 55 epochs.

Model performance is measured with the area under
receiver operating characteristics curve (ROC AUC) and area
under precision recall curve (PR AUC) averaged across all 919
targets. The PR AUC curve is in this case a better metric, as it
accounts for true negatives, making it less sensitive to the class

Table 1. Training Hyper-Parameters

Parameter Value

Epochs 55
Learning Rate 1e-5
Weight Initialization PyTorch Default
Loss Function Binary Cross Entropy

Figure 2. High Level Diagram of Hybrid Model Architecture

imbalance present in the data set (high sparsity of positive
targets).

Average model accuracy is displayed in Table 2. An initial
prediction threshold of 0.5 was used for comparison with the
original paper, and an optimal threshold of 0.215 was derived
from the PR curve. The optimal prediction threshold resulted
in a marginal accuracy decrease with a substantial increase in
F1 score.

Table 2. Accuracy and F1 Score Results

Threshold Mean Accuracy F1 Score

0.5 98.2% 0.281
0.215 97.6% 0.404

Optimized Threshold Greatly Increases F1 Score

https://www.python.org/
https://pytorch.org/
https://developer.nvidia.com/cuda-toolkit
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Figure 3. BCE Loss by Training Epoch

Figure 4. Area under receiver operating characteristics curve: 0.9320

DISCUSSION

BioQ was able to closely replicate DanQ’s results with mean
accuracy of 98.2% compared to DanQ’s 98.24%. The ROC
AUC and PR AUC scores are both within the range of results
demonstrated in the DanQ paper (0.927 to 0.972 for ROC
AUC and 0.291 to 0.469 for PR AUC). The primary diversions
from the original paper are training hyper-parameters and the
decision not to implement the DanQ-JASPAR model. The
DanQ-JASPAR model uses larger convolutional layers and
known motifs for weight initialization. The expanded model
size would not have fit into our available GPU memory
making training infeasible. Learning rate, gradient clipping
and training epochs were selected heuristically due to lack of
information in the original paper and unknown default settings
of deprecated packages. The main contributions BioQ adds are
code usability and batch memory access. Our implementation

Figure 5. Area under precision recall curve: 0.3942

is built on recent and supported releases of Python (3.12.7),
PyTorch (2.5.1), and CUDA (12.6.3) making it trivial to
download and train the model. We also expect that these
modern packages greatly reduce training time, though it is
difficult to compare across hardware. Additionally, the use
of batch memory access facilitates training on lower memory
systems. Next steps include implementing motif based weight
initialization, tracking validation scores during training, and
exploring how the last 8 years of advances in machine learning
model architecture, such as transformers, could be applied to
this problem.
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